Maximum binary tree II¶
Time: O(H); Space: O(1); medium
We are given the root node of a maximum tree: a tree where every node has a value greater than any other value in its subtree.
Just as in the previous problem, the given tree was constructed from an list A (root = Construct(A)) recursively with the following Construct(A) routine:
If A is empty, return null.
Otherwise, let A[i] be the largest element of A. Create a root node with value A[i].
The left child of root will be Construct([A[0], A[1], …, A[i-1]])
The right child of root will be Construct([A[i+1], A[i+2], …, A[A.length - 1]])
Return root.
Note that we were not given A directly, only a root node root = Construct(A).
Suppose B is a copy of A with the value val appended to it. It is guaranteed that B has unique values.
Return Construct(B).
Example 1:
Input: root = {TreeNode} [4,1,3,null,null,2], val = 5
Output: {TreeNode} [5,4,null,1,3,null,null,2]
Explanation:
A = [1,4,2,3], B = [1,4,2,3,5]
Example 2:
Input: root = {TreeNode} [5,2,4,null,1], val = 3
Output: {TreeNode} [5,2,4,null,1,null,3]
Explanation:
A = [2,1,5,4], B = [2,1,5,4,3]
Example 3:
Input: root = {TreeNode} [5,2,3,null,1], val = 4
Output: {TreeNode} [5,2,4,null,1,3]
Explanation:
A = [2,1,5,3], B = [2,1,5,3,4]
Constraints:
1 <= len(B) <= 100
[1]:
class TreeNode(object):
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
Auxiliary Tools¶
[2]:
from graphviz import Graph
class TreeTasks(object):
def visualize_tree(self, tree):
def add_nodes_edges(tree, dot=None):
# Create Graph (not Digraph) object
if dot is None:
dot = Graph()
dot.node(name=str(tree), label=str(tree.val))
# Add nodes
if tree.left:
dot.node(name=str(tree.left), label="."+str(tree.left.val))
dot.edge(str(tree), str(tree.left))
dot = add_nodes_edges(tree.left, dot=dot)
if tree.right:
dot.node(name=str(tree.right), label=str(tree.right.val)+".")
dot.edge(str(tree), str(tree.right))
dot = add_nodes_edges(tree.right, dot=dot)
return dot
# Add nodes recursively and create a list of edges
dot = add_nodes_edges(tree)
# Visualize the graph
display(dot)
return dot
[3]:
class Solution1(object):
"""
Time: O(H)
Space: O(1)
"""
def insertIntoMaxTree(self, root, val):
"""
:type root: TreeNode
:type val: int
:rtype: TreeNode
"""
if not root:
return TreeNode(val)
if val > root.val:
node = TreeNode(val)
node.left = root
return node
curr = root
while curr.right and curr.right.val > val:
curr = curr.right
node = TreeNode(val)
curr.right, node.left = node, curr.right
return root
[4]:
s = Solution1()
root = TreeNode(4)
root.left, root.right = TreeNode(1), TreeNode(3)
root.right.left = TreeNode(2)
val = 5
tree = s.insertIntoMaxTree(root, val)
t = TreeTasks()
dot = t.visualize_tree(tree)
[5]:
root = TreeNode(5)
root.left, root.right = TreeNode(2), TreeNode(4)
root.left.right = TreeNode(1)
val = 3
tree = s.insertIntoMaxTree(root, val)
t = TreeTasks()
dot = t.visualize_tree(tree)
[6]:
root = TreeNode(5)
root.left, root.right = TreeNode(2), TreeNode(3)
root.left.right = TreeNode(1)
val = 4
tree = s.insertIntoMaxTree(root, val)
t = TreeTasks()
dot = t.visualize_tree(tree)